ANNE SKAJA ROBINSON Chair of Chemical and Biomolecular Engineering Catherine and Henry Boh Professor in Engineering Tulane University, 300 Lindy Boggs Laboratory New Orleans, LA 70118-5674 (504) 865-5775 PH; (504) 865-8779 FAX asr@tulane.edu

EDUCATION

1994 **Ph.D.**, Chemical Engineering University of Illinois at Urbana-Champaign Dissertation: "Engineering the Yeast Secretory Pathway: The role of BiP and PDI in the secretion of foreign proteins in Saccharomyces cerevisiae." Advisors: Prof. Douglas A. Lauffenburger, Prof. K. Dane Wittrup

1989 M.S., Chemical Engineering

The Johns Hopkins University Thesis: "Isolation and Characterization of Proteolytic Enzymes from the Hyperthermophilic Archaebacterium Pyrococcus furiosus." Advisor: Prof. Robert M. Kelly

The Johns Hopkins University

1988 **B.S.**, Chemical Engineering Departmental Honors GPA 3.9/4.0

PROFESSIONAL EXPERIENCE

2012-present	Chair, Chemical and Biomolecular Engineering and Catherine and Henry Boh Professor in Engineering <i>Tulane University, School of Science and Engineering</i>
2012-present	Adjunct Professor University of Delaware, Department of Chemical and Biomolecular Engineering
2008-2011	Associate Chair for Biochemical Engineering University of Delaware, Department of Chemical Engineering
2008-2011	Full Professor University of Delaware, Department of Chemical Engineering
2003-2008	Associate Professor University of Delaware, Department of Chemical Engineering
1997-2003	Assistant Professor University of Delaware, Department of Chemical Engineering
1994-1997	Postdoctoral Fellow <i>Massachusetts Institute of Technology, Department of Biology</i> Advised by Professor Jonathan King.

ACADEMIC HONORS

2015	Perlman Awardee, American Chemical Society (ACS) BIOT division
2013	American Institute of Chemical Engineers (AIChE) Women's Initiatives Committee's
	(WIC) Mentorship Excellence Award
2011	Fellow, American Institute for Medical and Biological Engineering

- 2002 Outstanding Junior Faculty Member, College of Engineering, University of Delaware
- 2000-2005 NSF Presidential Early Career Award in Science and Engineering (PECASE/Career)
- 2000-2003 DuPont Young Professor
- 2000 National Academy of Engineering, Sixth Annual Frontiers in Engineering
- 1996-97 NIH Postdoctoral Fellowship
- 1992-94 Clare Booth Luce Graduate Fellowship
- 1989-92 Department of Defense Fellowship (NDSEG)
- 1988-89 NSF Creativity Award for Scientists and Engineers
- 1988 National Science Foundation Fellowship awarded (declined)
- 1988-89 Tau Beta Pi Fellowship
- 1984-88 Beneficial Hodson Scholarship, Johns Hopkins University

PATENTS

- A) Kelly, R.M., <u>A.K.S. Robinson</u>, I.I. Blumentals, S.H. Brown, and C.B. Anfinsen. "Proteolytic Enzymes from Hyperthermophilic Bacteria and Processes for Their Production." Patent # 5,242,817. Filed 9/12/89. Accepted 9/7/93. Licensed to Takara Shuzo.
- B) <u>Robinson, A.S.</u> and K.D. Wittrup. "Methods for Increasing Secretion of Overexpressed Proteins." Patent # 5,773,245. Filed 10/92. Accepted 6/30/98.
- C) <u>Robinson, A.S.</u>, D. Foguel, J.L. Silva, C.R. Robinson. "Use of Hydrostatic Pressure to Inhibit and Reverse Protein Aggregation and Facilitate Protein Refolding." Patent applied for, 60/161,035. Filed 10/99. Issued 11/10/09.

BOOK PUBLICATION

- Russell, T.W.F., Robinson, A.S., and Wagner, N.J., (2008) <u>Mass and Heat Transfer: Analysis of</u> <u>Mass Contactors and Heat Exchangers</u>, Cambridge University Press, Cambridge, UK (www.cambridge.org/9780521886703).
- 2) Robinson, A.S., ed (2011) Production of Membrane Proteins Strategies for Expression and Isolation, Wiley VCH (http://onlinelibrary.wiley.com/book/10.1002/9783527634521)

JOURNAL PUBLICATIONS (SINCE 2005)

- 32) Niebauer, R. T., and <u>A.S. Robinson</u>^{*} (2006) "Exceptional total and functional yields of the human adenosine (A2a) receptor expressed in the yeast Saccharomyces cerevisiae", *Prot. Exp. Purif.*, 46, p. 204-211.
- Gage, M.J, Lefebvre, B.G., and <u>A.S. Robinson</u>* (2006) "Determinants of Protein Folding and Aggregation in P22 Tailspike," in <u>Misbehaving Proteins</u>, ACS Publications, eds. Regina Murphy and Amos Tsai.
- 34) Kim, J. and <u>Robinson, A.S.</u>^{*} (2006) Dissociation of intermolecular disulfide bonds in P22 tailspike protein intermediates in the presence of SDS, *Protein Science*, 15 (7), p. 1791-3.
- 35) Wedekind, A.L.[†], O'Malley, M., Niebauer, R.T., and <u>Robinson, A.S.</u>^{*} (2006) Optimization of the Human Adenosine A₂a Receptor Yields in *Saccharomyces cerevisiae*, *Biotechnology Progress*, 22(5):1249-55. PMID:17022661; DOI: 10.1021/bp050431r
- 36) Powers, S.L., Robinson, C.R., and <u>Robinson, A.S.</u>^{*} (2007) Denaturation of an Extremely Stable Hyperthermophilic Protein Occurs via a Dimeric Intermediate, *Extremophiles*, 11(1):179-89.
- 37) Forsten-Williams^{*}, K.F., Cassino, T.R, Delo, L.J., Bellis, A.D., <u>Robinson, A.S.</u>, and Ryan, T.E., (2007) Enhanced Insulin-like Growth Factor-I (IGF-I) Cell Association at Reduced pH is Dependent on IGF Binding Protein-3 (IGFBP-3) Interaction, *Journal of Cellular Physiology*, 210(2):298-308.

- 38) Famá, M.C., Raden, D., Zacchi, N., Lemos, D.R., <u>Robinson, A.S.</u>, and Silberstein, S.^{*} (2007) "The *Saccharomyces cerevisiae* YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum" *Biochim Biophys Acta*, 1773(2):232-42.
- 39) Bane, S.E., Velasquez, J.E.[†], and <u>A.S. Robinson</u>^{*} (2007) "Expression and purification of milligram levels of inactive G-protein coupled receptors in *E. coli*", *Protein Expression and Purification*, 52(2):348:355. PMID: 17166740; DOI: 10.1016/j.pep.2006.10.017
- 40) Powers, S.L. and <u>A.S. Robinson</u>^{*} (2007) "PDI Improves Secretion of Redox-Inactive β-glucosidase", *Biotech Prog.*, Mar-Apr;23(2):364-9. E-pub Feb 22, DOI: 10.1021/bp060287p
- 41) McCusker, E., Bane, S.E., O'Malley, M., and <u>A.S. Robinson</u>^{*} (2007), "Heterologous GPCR expression: A bottleneck to obtaining crystal structures", *Biotech Progress*, May-Jun;23(3):540-7. PMID:17397185
- 42) O'Malley, M., Lazarova, T., Britton, Z.T., and <u>Robinson, A.S.</u>^{*} (2007) "High-level expression in *Saccharomyces cerevisiae* enables isolation and spectroscopic characterization of functional human adenosine A₂a receptor", *J. Struct Biol.*, 159(2): 166-178. PMID: 17591446
- 43) McCusker, E., and <u>Robinson, A.S.</u>*, (2008) Refolding of G protein α subunits from inclusion bodies expressed in *Escherichia coli*, *Protein Exp. Purif.*, Apr;58(2): 342-55. PMID: 18249008
- 44) Hildebrandt, S., D. Raden, L. Petzold, <u>A.S. Robinson</u>, and F.J. Doyle III* (2008) "A top-down approach to mechanistic biological modeling: application to the single-chain antibody folding pathway", *Biophysical Journal*, 95(8):3535-58. Epub 2008 Jul 18. PMID: 18641066
- Webber T, Gurung S, Saul J, Baker T, Spatara M, Freyer M, <u>Robinson AS</u>, Gage MJ* (2009)
 "The C-terminus of the P22 tailspike protein acts as an independent oligomerization domain for monomeric proteins.", *Biochem J*. May 1;419(3):595-602. PMID: 19196242
- 46) Spatara ML, Roberts CJ, <u>Robinson AS</u>^{*} (2009) "Kinetic folding studies of the P22 tailspike betahelix domain reveal multiple unfolded states." *Biophys Chem.* 141(2-3):214-21. PMID: 19258192
- 47) Xu, P. and <u>Robinson, A.S.</u>* (2009) "Decreased secretion and unfolded protein response upregulation are correlated with intracellular retention for single-chain antibody variants produced in yeast" *Biotech & Bioeng*, 104(1):20-9. PMID: 19415776
- O'Malley MA, Mancini JD[†], Young CL, McCusker EC, Raden D, <u>Robinson AS*</u>.(2009) "Progress toward heterologous expression of active G-protein-coupled receptors in Saccharomyces cerevisiae: Linking cellular stress response with translocation and trafficking." *Protein Sci.* 18(11):2356-2370. PMID: 19760666; DOI: 10.1002/pro.246
- 49) Spatara, ML and Robinson, AS* (2010) "Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction" Journal of Neuroscience Research, 88(9):1951-61. PMID: 20143409
- 50) O'Malley, MA, AN Naranjo, T Lazarova, AS Robinson^{*} (2010) "Analysis of Adenosine A₂a Receptor Stability: Effects of Ligands and Disulfide Bonds", *Biochemistry*, Nov 2;49(43):9181-9. PMID: 20853839
- 51) Yuraszeck, TM, Neveu, P, Rodriguez-Fernandez, M, Robinson, AS, Kosik, KS, and FJ Doyle III^{*} (2010) Vulnerabilities in the Tau Network and The Role of Ultrasensitive Points in Tau Pathophysiology, *PLoS Computational Biology*, 6(11): e1000997. doi:10.1371/journal.pcbi.1000997 (with cover art)
- 52) O'Malley, MA, Helgeson, ME, Wagner, NJ and AS Robinson^{*} (2011) Morphology and Composition of Cholesterol-rich Micellar Nanostructures Determine Transmembrane Protein (GPCR) Activity, *Biophysical Journal*, 100(2): L11-13. PMID: 3021673.
- 53) Sahin, E, JL Jordan, ML Spatara, AN Naranjo, WF Weiss IV, AS Robinson, EJ Fernandez^{*}, CJ Roberts^{*} (2011) "Computational Design and Biophysical Characterization of Aggregation-Resistant Point Mutations for γD Crystallin Illustrate a Balance of Conformational Stability and Intrinsic Aggregation Propensity", *Biochemistry*, Feb 8;50(5):628-39. PMID: 21184609

- 54) Young CL, Yuraszeck T, Robinson AS* (2011) "Decreased secretion and unfolded protein response upregulation," *Methods Enzymol.* 491:235-60. PMID: 21329804
- 55) Robinson, A.* (2011) "New Tools for Breaking Barriers to GPCR Expression in *E. coli*" Journal of Molecular Biology. 408 (4): 597-598 PMID: 21420418
- 56) Britton, Z., Young, C., Can, Ö., McNeely, P., Naranjo, A. and Robinson, A. S. (2012) Membrane Protein Expression in *Saccharomyces cerevisiae*, in Production of Membrane Proteins: Strategies for Expression and Isolation (ed A. S. Robinson), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527634521.ch2
- 57) O'Malley, Michelle A., Matthew E. Helgeson, Norman J. Wagner, Anne S. Robinson^{*} (2011) "Toward Rational Design of Protein Detergent Complexes: Determinants of Mixed Micelles that are Critical for the *in vitro* Stabilization of a G-protein Coupled Receptor", *Biophysical Journal*, 101 (8): 1938-1948. DOI: 10.1016/j.bpj.2011.09.018 PMID: 22004748
- 58) Griesemer, M, Young, CL, Doyle III, FJ, Robinson, AS and L Petzold^{*} (2012) Spatial Localization of Chaperone Distribution in the Endoplasmic Reticulum of Yeast, *IET Systems Biology*, 6(2):54-63. <u>http://dx.doi.org/10.1049/iet-syb.2011.0006</u>
- 59) Young, CL, ZT Britton, AS Robinson,* (2012) "Recombinant Protein Expression and Purification: A Comprehensive Review of Affinity Tags and Microbial Applications" *Biotechnology Journal*, May;7(5):620-34. doi: 10.1002/biot.201100155. Epub 2012 Jan 10. PMID: 22442034
- Young, CL, DL Raden, J Caplan, K Czymmek, AS Robinson,* (2012) "Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast", *Yeast*, Mar;29(3-4):119-36. doi: 10.1002/yea.2895. Epub 2012 Apr 4. PMID: 22473760
- 61) Britton, ZT, EI Hanle[†], and AS Robinson^{*} (2012) An Expression and Purification System for the Biosynthesis of Adenosine Receptor Peptides for Biophysical and Structural Characterization, *Protein Exp. Purif.*, 84:224-235. PMID: 22722102; DOI: 10.1016/j.pep.2012.06.005
- 62) McNeely, P.M., Naranjo, A.N., and A.S. Robinson* (2012) Structure-function studies with Gprotein coupled receptors as a paradigm for improving drug discovery and therapeutic development, *Biotechnology Journal*, 7(12): 1451-1461. DOI: 0.1002/biot.201200076 PMID: 23213015
- 63) Young, CL, DL Raden, AS Robinson,* (2013) Analysis of ER Resident Proteins in *S. cerevisiae*: Implementation of H/KDEL Retrieval Sequences, *Traffic*, 14(4):365-81. DOI: 10.1111/tra.12041. PMID: 23324027
- 64) Morozova, OA, ZM March[†], AS Robinson, and DW Colby^{*} (2013) Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein, *Biochemistry*, 52(40):6960-7. http://dx.doi.org/10.1021/bi400866w PMID: 24033133
- 65) Maurer, Ronald W., Alan K Hunter, Xiangyang Wang, William K Wang, Anne S Robinson, and Christopher J. Roberts^{*} (2013) Folding and aggregation of a multi-domain engineered immunotoxin, *Biochemical Engineering Journal*, 81: 8-14. http://dx.doi.org/10.1016/j.bej.2013.09.015.
- 66) Blanco, M, Sahin, E, Robinson, A, Roberts, C^{*} (2013) Coarse-Grained Model for Colloidal Protein Interactions, B₂₂, and Protein Cluster Formation, *The Journal of Physical Chemistry, Part B*, Dec 19;117(50):16013-28. doi: 10.1021/jp409300j PMID: 24289039
- 67) Maurer, RW, AK Hunter, AS Robinson^{*}, and CJ Roberts^{*} (2014) Aggregates of alphachymotrypsinogen anneal to access more stable states, *Biotechnology & Bioengineering*, 111 (4): 782-791. doi: 10.1002/bit.25129 PMID: 24122552
- 68) St. Amand, MM, Ogunnaike, BA, and Robinson, AS^{*} (2014) Development of At-Line Assay to Monitor Charge Variants of mAbs During Production, *Biotechnology Progress*, 30: 249–255. DOI: 10.1002/btpr.1848 PMID: 24382831

- 69) St. Amand, MM, K Tran[†], D Radhakrishnan, AS Robinson, BA Ogunnaike^{*} (2014) Controllability Analysis of Protein Glycosylation in CHO cells, *PLoS One*, 9(2): e87973. DOI: 10.1371/journal.pone.0087973
- 70) Wu, H, R Kroe-Barrett, S Singh, AS Robinson, CJ Roberts^{*} (2014) Competing aggregation pathways for monoclonal antibodies, *FEBS Letters* 588(6): 936-941. http://dx.doi.org/10.1016/j.febslet.2014.01.051
- JA Costanzo, CJ O'Brien, K Tiller[†], E Tamargo[†], AS Robinson, CJ Roberts, and EJ Fernandez,*
 (2013) Computational Design to Control Protein Aggregation Rates Through Conformational Stability, *Protein Eng, Des, & Sel*, 27 (5): 157-167. 10.1093/protein/gzu008
- 72) St. Amand, MM, D Radhakrishnan, AS Robinson, BA Ogunnaike^{*} (2014) Identification of Manipulated Variables for a Glycosulation Control Strategy, *Biotech Bioeng*, in press. Available online: 22 MAY 2014 DOI: 10.1002/bit.25251
- 73) Griesemer, M., Young, C., <u>Robinson, A.S.</u>, Petzold, L.^{*} (2014) BiP Clustering Facilitates Protein Folding in the Endoplasmic Reticulum, *PLOS Computational Biology*, 10(7):1-16, 10.1371/journal.pcbi.1003675
- 74) Young, CL and AS Robinson^{*} (2014) Protein Folding and Secretion: Mechanistic Insights Advancing Recombinant Protein Production in *S. cerevisiae, Current Opinion in Biotechnology*, 30: 168-177. Available online 15 July 2014 DOI: 10.1016/j.copbio.2014.06.018
- 75) Naranjo, AN, A Chevalier[†], GD Cousins[†], E Ayettey[†], EC McCusker, C Wenk, AS Robinson (2015) Conserved disulfide bond is not essential for the adenosine A2A receptor: extracellular cysteines influence receptor distribution within the cell and ligand-binding recognition, *BBA Biomembranes*, 1848: 603-614 Available on-line Dec 5 2014 DOI: 10.1016/j.bbamem.2014.11.010
- 76) Blocker, KM, ZT Britton, AN Naranjo, PM McNeely, CL Young, AS Robinson^{*}, (2015) Recombinant G protein-coupled receptor expression in *Saccharomyces cerevisiae* for protein characterization, in "Membrane Proteins – Production and Function Characterization", *Methods Enzymol.*, 556:165-83. doi: 10.1016/bs.mie.2014.12.025
- 77) Wu, H, K Truncali, J Ritchie, R Kroe-Barrett, S Singh, AS Robinson, and CJ Roberts^{*} (2015) Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1, *mAbs*, in press

PEER-REVIEWED CONFERENCE PROCEEDINGS

- Hildebrandt, S., D. Raden, E. Bell[†], <u>A.S. Robinson</u>, and F.J. Doyle III* (2005) "Modeling the Unfolded Protein Response in Saccharomyces Cerevisiae", Proc. Int. Conf. Foundations of Systems Biology, Santa Barbara, California. [not indexed]
- 2) Griesemer, M., Young, C., Raden, D., Petzold, L., <u>Robinson, A.S.</u>, Doyle, F.J.^{*} (2007) "Computational Modeling of Chaperone Interactions in the Endoplasmic Reticulum of *Saccharomyces cerevisiae*." Proc. Int. Conf. Foundations of Systems Biology, Stuttgart, Germany.
- 3) Yuraszeck, T., Raden, D, <u>Robinson, A.S.</u>, and Doyle, F.J.^{*} (2007) "Microarray Analysis of the Unfolded Protein Response in *S. cerevisiae* Reveals Evidence of Down-regulation." Proc. Int. Conf. Foundations of Systems Biology, Stuttgart, Germany.
- 4) Yuraszeck, Theresa M., Pierre Neveu, Maria Rodriguez-Fernandez, Anne Robinson, Kenneth S. Kosik, Francis J. Doyle III (2009) Development of a mathematical model to investigate the pathophysiology of tau protein." Proc. Int. Conf. Foundations of Systems Biology, Denver, CO.

GRADUATE RESEARCH THESES

PhD Students

- Brian Lefebvre, May 2002; High Pressure Dissociates Tailspike Aggregates and Promotes Native Structure Formation; Assistant Professor, Rowan University, NJ (2004-2008); Current Position, Senior Research Engineer, DuPont & Co.
- James Butz, June 2002; Characterizing and Optimizing GPCR Expression in Yeast; 2005-2006, Senior Scientist, Schering-Plough; 2006-2011, Associate Principal Scientist, Schering-Plough, NJ. Current position, Principal Scientist, Merck & Co.
- 3) Brenda Danek, March 2003; Characterization of the Role of Disulfides in Folding of Tailspike Protein; J.D., 2008, NYU; current position: Associate, Leydig, Voit & Mayer, LLP
- Jessica Sinacola, August, 2003; Characterization and Reversal of the Aggregation of Single-Chain Antibodies; current position, Process Engineer, Sterile Process Technology & Engineering, Merck & Co, West Point, PA.
- 5) Jason Šmith, July 2003; Folding and Expression of Extremophilic Enzymes; 2003-2006 Postdoctoral Fellow, Carnegie Mellon University; 2006-2007, Product Development Engineer, Cohera Medical, Pittsburgh, PA; current position, Manager of Research and Development at Carmell Therapeutics.
- 6) Ronald Niebauer, July 2005; Using GFP as a Sensor for Optimizing Expression of GPCRs; current position, Biotechnology Patent Examiner, US Patent Office, Washington, DC.
- 7) Junghwa Kim, June 2006; Roles of Folding Intermediate Conformation and Transient Disulfide Bonding on the Folding of P22 Tailspike Protein; current position, Scientist, MedImmune.
- 8) Sara Lawrence Powers, July 2006; Characterization and Expression of an Extremely Stable Hyperthermophilic Protein; 2006-2008, Postdoctoral Fellow, Wistar Institute; current position, Biomatrica.
- 9) Ping Xu, July 2006; Sensing and Analyzing the Unfolded Protein Response during Heterologous Protein Production; current position, Scientist, Glaxco Smith Kline.
- 10) Steven Bane, May 2007; Expression and Characterization of the Human Neurokinin 1 receptor from *E. coli*; Process Engineer, Sterile Process Technology & Engineering, Merck & Co, West Point, PA, 2007-2011; current position, Scientist, Amgen
- 11) Emily McCusker, December 2007; Overcoming Expression Obstacles in Producing Functional Components of the G-Protein Coupled Receptor Pathway; current position, Teva Pharmaceuticals.
- 12) Michelle Spatara, May 2009; Protein folding and aggregation *in vitro* and *in vivo*; current position, Investigator, GSK.
- 13) Michelle O'Malley, August 2009; Expression, Purification, and Biophysical Characterization of G-Protein Coupled Receptors Expressed from Saccharomyces cerevisiae; current position, Assistant Professor, UC Santa Barbara
- 14) Carissa Young, December 2012; Interrogation of Quality Control Mechanisms and Protein Trafficking in *Saccharomyces cerevisiae*; current position, post-doctoral fellow, MIT
- 15) Zachary Britton, December 2012; Novel Approaches to the Expression and Purification of G Protein-coupled Receptors; current position, Scientist, MedImmune
- 16) Melissa St. Amand, September 2013; Toward Online Quality Control during Biopharmaceutical Production; current position, post-doctoral fellow, Biotechnology Core Lab., ODIR, NIDDK, NIH
- 17) Andrea Naranjo, October 2014; Stability and Activity of a GPCR in vivo and in Membrane Mimetic Environments; post doc, NIH
- 18) Patrick McNeely, July 2015; Receptor-receptor, Ligand, and Membrane Interactions of the Adenosine A_{2A} Receptor

MChE Students

 Sujata Bhatia, BChE/MChE, May 1999, Novel Role for Cysteines in *in vivo* folding of P22 Tailspike Protein; M.D./Ph.D, UPenn, 2003; Medical Research Scientist, DuPont Central Research & Development, Wilmington, DE, 2003-2011; current position, Assistant Director for Undergraduate Studies in Biomedical Engineering, Harvard University.

- Honors include: 1998 Barry M. Goldwater Award, 1999 AIChE Student Paper Award, 1999 NSF and NDSEG graduate fellowships
- 2) Nicole Sheatsley Richardson, March 2005; Optimizing Extremophile Expression in Yeast; Centocor, Malvern, PA, 2005-2008
- Nathanial Macapagal, May 2011; Characterization of the Folding and Assembly of Single-Chain Antibodies; current position, Associate Scientist I, Purification Process Sciences, MedImmune.
- 4) Nikki Ross, January 2012; The Role of Oxidative Stress on Tau Protein Homeostasis in Neurodegenerative Diseases